

Bedienungsanleitung ControlPlex® Controller CPC12EC

1 Inhaltsverzeichnis

1	Inhaltsverzeichnis				
2	Allgen	neine Hinweise	4		
	2.1	Sicherheitshinweise	4		
	2.2	Qualifiziertes Personal	4		
	2.3	Verwendung	4		
	2.4	Auslieferzustand	4		
3	Allgen	neine Beschreibung	5		
	3.1	Aufbau des Gesamtsystems	6		
	3.2	Abmessungen CPC12xx-Tx	7		
	3.3	Anzeigeelemente und Anschlüsse	7		
	3.3.1	Klemmen für die Spannungsversorgung	8		
	3.3.2	EtherCAT- Schnittstellen mit integriertem Switch,			
		Buchse XF1 (IN), XF2 (OUT)	8		
	3.3.3	ETHERNET- Schnittstelle, Buchse X1	8		
	3.3.4	LED Statusanzeige	9		
4	Monta	9			
	4.1	Montage des Systems	9		
5	Betrie	bsarten des Buscontroller CPC12	10		
	5.1	Betriebsart: Startup Mode	10		
	5.2	Betriebsart: System Error Mode	10		
	5.3	Betriebsart: Configuration Error Mode	10		
	5.4	Betriebsart: Standalone Mode	10		
	5.5	Betriebsart: Slave Mode	10		
	5.5	Betriebsart: Firmware Update Mode	10		
6	Grund	lfunktionalitäten des Gesamtsystems	11		
	6.1	Interne Zykluszeiten	11		
	6.2	Hot Swap der Sicherungsautomaten	11		
	6.3	Über die zusätzliche Ethernet-Schnittstelle	11		
	6.3.1	Webserver	11		
	6.3.2	Default IP-Adresse -X1	11		
	6.3.3	Benutzername und Passwort	11		
	6.3.4	OPC UA	11		
	635	MOTT	11		

7	Komn	nunikation über EtherCAT	12
	7.1	ControlPlex® Gerätemodell	
	7.2	ESI-Datei	16
8	Zyklis	che E/A Daten	16
	8.1	Zyklische Daten CPC12 Controller	16
	8.1.1	I/O-Daten CPC12 Controller	16
	8.1.2	Summenstrom CPC12 Controller	16
	8.2	Zyklische Daten Sicherungsautomaten	17
	8.2.2	Zyklische Eingangsdaten Sicherungsautomaten	17
	8.2.3	Zyklische Ausgangsdaten Sicherungsautomaten	18
9	Azykli	sche Daten	19
	9.1	CPC12 Controller	20
	9.1.1	Geräteinformationen CPC12 Controller	20
	9.1.2	Konfigurationsdaten CPC12 Controller	21
	9.1.3	Aktionsbefehle CPC12 Controller	22
	9.1.4	Dynamische Informationen CPC12 Controller	23
	9.2	Sicherungsautomaten/Kanäle	23
	9.2.1	Geräteparameter für einen Kanal	23
	9.2.2	Geräteinformationen für einen Kanal	24
	9.2.3	Konfigurationsdaten für einen Kanal	25
	9.2.4	Ereignismeldung für einen Kanal	25
	9.2.5	Aktionsbefehle für einen Kanal	26
	9.2.6	Diagnosedaten für einen Kanal	27
10	Anhar	ng	29
	10.1	Abbildungsverzeichnis	29
	10.2	Technische Daten	
	10.3	Stichwortverzeichnis	29

2 Allgemeine Hinweise

2.1 Sicherheitshinweise

Diese Bedienanleitung weißt auf mögliche Gefahren für Ihre persönliche Sicherheit hin und gibt Hinweise darauf was beachtet werden muss, um Sachschäden zu vermeiden. Im Einzelnen werden die folgenden Sicherheitssymbole verwendet, welche den Leser auf die im Text nebenstehenden Sicherheitshinweise aufmerksam machen soll.

Gefahr!

Es bestehen Gefahren für das Leben und die Gesundheit, wenn nicht die folgenden Sicherheitsmaßnahmen getroffen werden.

Warnung!

Es bestehen Gefahren für Maschinen, Materialien oder die Umwelt, wenn nicht die folgenden Sicherheitsmaßnahmen getroffen werden.

Hinweis!

Es werden Hinweise gegeben, welche zu einem verbesserten Verständnis führen sollen.

Achtung

Elektrostatisch gefährdete Bauelemente (EGB). Öffnung des Geräts ausschließlich durch den Hersteller.

Entsorgungsrichtlinien

Verpackung und Packhilfsmittel sind recyclingfähig und sollen grundsätzlich der Wiederverwertung zugeführt werden.

2.2 Qualifiziertes Personal

Die Bedienanleitung darf ausschließlich von qualifiziertem Personal verwendet werden. Dieses sind Personen, welche Aufgrund ihrer Ausbildung und Erfahrung befähigt sind, beim Umgang mit dem Produkt, auftretende Risiken zu erkennen und entsprechende Gefährdungen zu vermeiden. Diese Personen müssen gewährleisten, dass der Einsatz des beschriebenen Produktes allen Sicherheitsanforderungen sowie den geltenden Bestimmungen, Vorschriften, Normen und Gesetzten genügt.

2.3 Verwendung

Das Produkt befindet sich in einer ständigen Weiterentwicklung. Aus diesem Grund kann es zu Abweichungen zwischen dem Produkt und der Dokumentation kommen. Diese werden durch eine regelmäßige Überprüfung und der daraus erfolgenden Korrektur in den folgenden Auflagen beseitigt. Sollte die Dokumentation technische oder orthografische Fehler enthalten, behalten wir uns das Recht vor, diese Korrekturen ohne vorherige Ankündigung durchzuführen.

2.4 Auslieferzustand

Das Produkt wird mit einer definierten Hard- und Softwarekonfiguration ausgeliefert. Sollten Änderungen, welche über die dokumentierten Möglichkeiten hinausgehen, vorgenommen werden, sind diese unzulässig und haben einen Haftungsausschluss zur Folge.

3 Allgemeine Beschreibung

Die Ansprüche der Kunden nach einer gleichbleibenden Qualität der produzierten Güter, bei gleichzeitiger Erhöhung der Stückzahlen stellen den Maschinen- und Anlagenbau vor große Herausforderungen. Parallel dazu sorgt die Globalisierung für weltweite Wertströme und Fertigungsketten. Maschinen und Anlagen, die vor Jahren noch regional organisiert waren, werden heute weltweit vernetz. Diese Entwicklungen erweitern die Anforderungen an die Steuerung der Maschinen und Anlagen sowie der eingesetzten Komponenten. Eine immer größer werden Anzahl von Messdaten müssen erfasst, analysiert, bewertet und gespeichert werden. Dieses erhöht die Transparenz der Fertigungsprozesse und dadurch die Anlagenverfügbarkeit.

Auch die DC 24 V-Stromverteilung ist von dieser Entwicklung nicht unberührt. Die Steuerspannung versorgt die wesentlichen Komponenten der Maschine bzw. Anlage. Dieses sind neben der speicherprogrammierbaren Steuerungen z.B. die Aktoren und Sensoren. Daher kommt dieser eine besondere Bedeutung im gesamten Fertigungsprozess zu. Ihre Verfügbarkeit und Stabilität sind wesentlich für die Anlagenverfügbarkeit und die Qualität der gefertigten Produktionsgüter. Diesen Anforderungen wird das REX-System gerecht. Es besteht aus den elektronischen Sicherungsautomaten, welche ohne zusätzliche Komponenten, über den integrierten Kontaktbügel miteinander verbunden werden. Die Versorgung erfolgt über das Einspeisemodul EM12, welches

die Sicherungsautomaten mit max. 40 A versorgen kann. Der neue Buscontroller CPC12 ermöglicht darüber hinaus den Zugriff auf alles Systemrelevanten Daten von den übergeordneten Steuerungssystemen. Dieses geschieht zum einen über die EtherCAT-Schnittstelle sowie eine weitere Ethernet-Schnittstelle.

Dadurch verbindet der CPC12 die Sicherungsautomaten mit der übergeordneten Steuerung. Mit seiner internen **ELBus®**-Schnittstelle wird die Verbindung zu den intelligenten Sicherungsautomaten¹ aus der REX-Familie realisiert. Dabei ermöglicht der CPC12 den kompletten Zugriff auf alle erforderlichen Parameter der elektronischen Sicherungsautomaten, ihre Steuerung und die Visualisierung der Gerätedaten.

Dies wird zum einen an den Feldbusschnittstellen für die übergeordnete Steuerung, als auch an der dritten RJ45-Schnittstelle für eine weitere Anbindung bereitgestellt. Das System bietet somit die volle parametrierbare Absicherung der DC 24 V-Stromkreise und gewährleistet den selektiven Überstromschutz von Sensoren und Aktoren, dezentralen Peripherie-Baugruppen etc. und deren Zuleitungen.

¹ Zur Vereinfachung der Darstellung und Erläuterung wird die Benennung der intelligenten Sicherungsautomaten auf die Systembezeichnung REX beschränkt. Diese Bezeichnung umfasst die Sicherungsautomaten REX12D und REX22D.

3.1 Aufbau des Gesamtsystems

Der Buscontroller CPC12 bildet das Zentrum des *ControlPlex®*-Systems. Dieser ermöglicht eine durchgängige Kommunikation zwischen den elektronischen Sicherungsautomaten und der übergeordneten Steuerungsebene, angeschlossenen HMI's sowie bis in die Cloud.

Die EtherCAT Schnittstelle zur übergeordneten Steuerung ist mit zwei RJ45-Buchsen realisiert. Sie ermöglicht den Anschluss der gewünschten Steuerung an das *ControlPlex®*-System. Dadurch sind die Anzeige, die Analyse sowie die Diagnose der einzelnen Messwerte möglich. Darüber hinaus erlaubt sie die Steuerung der einzelnen elektronischen Sicherungsautomaten. Über eine zusätzliche Ethernet-Schnittstelle ist der direkte Zugriff auf den integrierten Webserver des Buscontrollers möglich. Servicemitarbeiter haben dadurch den direkten Zugriff auf das System vor Ort. Sie ermöglicht darüber hinaus den Zugriff über

die angeschlossene Infrastruktur des Unternehmens und somit auch weltweit. Durch OPC UA und MQTT besteht in Zukunft die Möglichkeit alle Messwerte und Statusinformationen unabhängig vom Steuerungssystem z.B. an eine übergeordnete Cloud-Anwendung zu übertragen.

Änderungen der Messwerte aller elektronischen Sicherungsautomaten werden auch an das Automatisierungssystem weitergeleitet. Das ermöglicht dem Anwender auch im Störungsfall einen uneingeschränkten Zugriff auf sicherheitsrelevante Funktionen. Auftretende Störungen werden zielgerichtet und schnell detektiert und können umgehend behoben werden. Das *ControlPlex*®-Systems verringert zielführend Anlagenstillstandszeiten und erhöht die Produktivität signifikant.

An den Buscontroller CPC12 können direkt bis zu 16 zweikanalige elektronische Sicherungsautomaten angeschlossen werden.

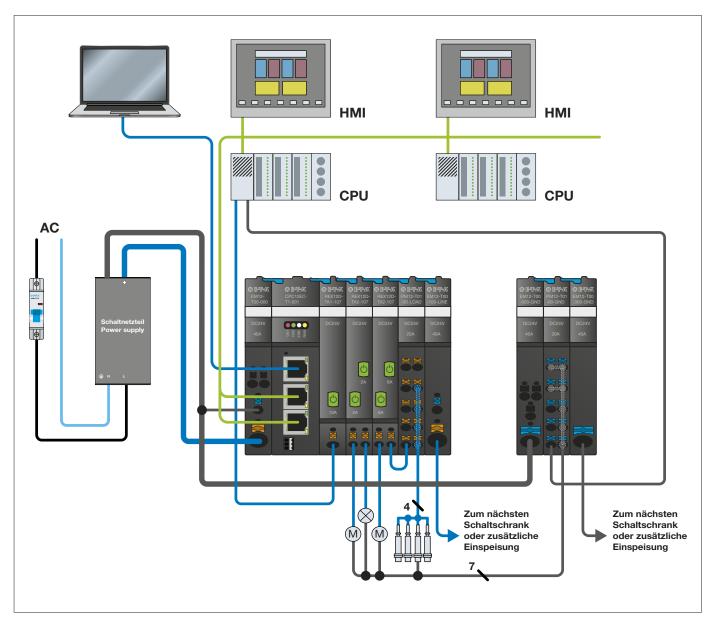


Abbildung 1: Systemübersicht

3.2 Abmessungen CPC12xx-Tx

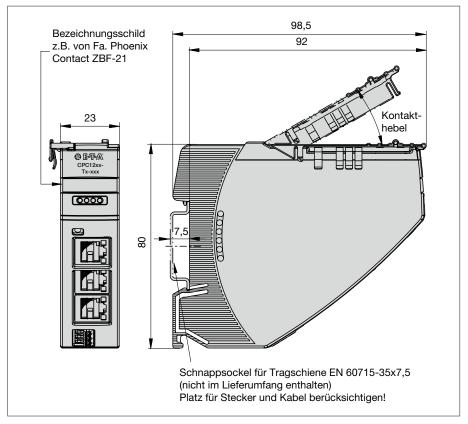


Abbildung 2: Abmessungen CPC12

3.3 Anzeigeelemente und Anschlüsse

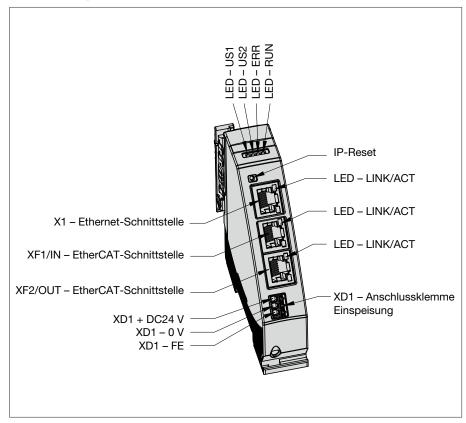


Abbildung 3: Anzeigeelemente und Anschlüsse CPC12EC

3.3.1 Klemmen für die Spannungsversorgung

Einspeisung XD1

Nennspannung: DC 24 V ($\pm 5 \% \rightarrow 18 ... 30 V$)

Nennstrom: typ. = 75 mA

Anschlüsse: 3 x Push-In Klemmen, (+/0V/FE)

Anschlussvermögen starr $0.2 - 1.5 \text{ mm}^2$ flexibel mit Aderendhülse (ohne Kunststoffhülse) $0.2 - 1.5 \text{ mm}^2$ flexibel mit Aderendhülse (mit Kunststoffhülse) $0.2 - 0.75 \text{ mm}^2$

Leiterquerschnitte AWG24 – AWG16 str.

Abisolierlänge 8 mm

Die Verwendung einer Versorgungsspannung, welche nicht dem angegebenen Betriebsbereich entspricht kann zu Fehlfunktionen beziehungsweise zur Zerstörung des Gerätes führen.

Die Spannungsversorgung des Buscontrollers CPC12 wird ebenfalls über das Einspeisemodul und den entsprechenden Verbindungsbügel sichergestellt. Die Verwendung der Einspeiseklemmen ist optional.

3.3.2 EtherCAT- Schnittstellen mit integriertem Switch, Buchse XF1 (IN), XF2 (OUT)

XF1 Verbindung an das Bussystem EtherCAT

Typ: RJ45

Bei der Verdrahtung und dem Anschluss an das Bussystem EtherCAT ist die Installationsrichtlinie (ETG.1600) der EtherCAT Technology Group zu beachten.

XF2 Verbindung an das Bussystem EtherCAT

Typ: RJ45

Bei der Verdrahtung und dem Anschluss an das Bussystem EtherCAT ist die Installationsrichtlinie (ETG.1600) der EtherCAT Technology Group zu beachten.

3.3.3 ETHERNET- Schnittstelle, Buchse X1

Verbindung mit dem Buscontroller CPC12 und dem integrierten WebserverTyp: RJ45

3.3.4 LED Statusanzeige

Optische Signalisierung des Betriebszustandes über mehrfarbige Leuchtanzeige

Detriebeert		Signalisierung	der Betriebsart	
Betriebsart	LED US1	LED US2	LED ERR	LED RUN
EtherCAT Init-State	n.a.	n.a.	n.a.	aus
EtherCAT Pre-Operational-State	n.a.	n.a.	n.a.	grün blinkend (0,2 s an / 0,2 s aus)
EtherCAT Safe-Operational-State	n.a.	n.a.	n.a.	grün blinkend (0,2 s an / 1 s aus)
EtherCAT Operational-State	n.a.	n.a.	n.a.	grün
EtherCAT Fehler	n.a.	n.a.	rot	n.a.
Kein EtherCAT Fehler	n.a.	n.a.	aus	n.a.
Spannungsversorgung OK	grün	n.a.	n.a.	n.a.
Firmware Update	aus	aus	aus	aus
Aktorspannung OK	n.a.	grün	n.a.	n.a.
Keine Aktorspannung	n.a.	rot	n.a.	n.a.
Kein angeschlossenes Gerät oder Bus-Fehler	n.a.	orange blinkend (0,5 s an / 0,5 s aus)	n.a.	n.a.

Abbildung 4: Anzeige Status LED's

n.a. = not applicable

Optische Signalisierung der RJ45 Schnittstellen

LED-LINK/ACT

Betriebsart	Signalisierung der Betriebsart	
Link vorhanden	grün	
Link nicht vorhanden	aus	
Act vorhanden	grün blinkend	

Abbildung 5: Anzeige LED's RJ45-Buchsen

4 Montage und Installation

4.1 Montage des Systems

Die bevorzugte Einbaulage des *ControlPlex®* Systems ist waagerecht.



Abbildung 6: Montagezeichnung

5 Betriebsarten des Buscontroller CPC12

5.1 Betriebsart: Startup Mode

Mit dem Anlegen der Versorgungsspannung wird der Buscontroller CPC12 initialisiert. Dabei fährt das Gerät interne Programmspeichertests und Selbsttestroutinen durch. Während dieser Zeit ist eine Kommunikation über die Schnittstellen nicht möglich.

5.2 Betriebsart: System Error Mode

Wurde bei den durchgeführten Selbsttestroutinen ein Fehler festgestellt, wechselt der Buscontroller in die Betriebsart System Error. Diese Betriebsart kann nur durch einen Neustart des Gerätes beendet werden und verhindert den Datenaustausch über die Schnittstellen. Befindet sich der Buscontroller in dieser Betriebsart, können die elektronischen Sicherungsautomaten nicht von diesem gesteuert werden und bleiben im Standalone (Überstromschutz) Mode.

5.3 Betriebsart: Configuration Error Mode

Befinden sich im Buscontroller keine oder ungültige Konfigurationsdaten, so wechselt dieser in diese Betriebsart. In dieser Betriebsart ist nur der azyklische Datenaustausch möglich. Der zyklische Datenaustausch wird verhindert. Verlassen wird diese Betriebsart nach dem Erhalt von korrekten Slot-Parametern und Konfigurationsdaten.

5.4 Betriebsart: Standalone Mode

In dieser Betriebsart besteht keine Verbindung zwischen dem Buscontroller und der übergeordneten Steuerung.

Deshalb übernimmt der Buscontroller CPC12 eigenständig die Kontrolle über die Steuerung und die Parametrierung der elektronischen Sicherungsautomaten, da in ihm alle benötigten Datensätze gespeichert sind. Mit Hilfe des Webservers kann über die Ethernet-Schnittstelle auf die elektronischen Sicherungsautomaten, deren Status und deren Parameter zugegriffen werden. Das Ändern von z.B. Parameterdaten der unterschiedlichen elektronischen Sicherungsautomaten ist somit möglich. Nach dem Verbindungsaufbau zur übergeordneten Steuerung wird diese Betriebsart verlassen und die Steuerung übernimmt als Master wieder die Kontrolle. Wurde während der Zeit, bei nicht vorhandener Kommunikation, ein Parameter geändert, so wird dieses der übergeordneten Steuerung gemeldet. In diesem Fall kann das Verhalten der Steuerung vom Anwender entsprechend definiert und in seiner speicherprogrammierbaren Steuerung programmiert werden. Dadurch ermöglicht man dem Anwender die Wahl einer auf seine Bedürfnisse angepassten Reaktion.

5.5 Betriebsart: Slave Mode

In dieser Betriebsart ist der Buscontroller CPC12 in ein EtherCAT-System eingebunden. Die Kommunikation zum Buscontroller CPC12 funktioniert fehlerfrei, und dieser kann von der übergeordneten Steuerung angesprochen und gesteuert werden. Sollte es zu einem Ausfall der Kommunikation kommen, hat dieses keinen Einfluss auf das Schutzverhalten der Sicherungsautomaten. Das Verhalten des Buscontrollers bei gleichzeitiger Verwendung der Feldbusschnittstelle sowie des Webservers kann über die Konfiguration des Gerätes in der übergeordneten Steuerung festgelegt werden.

Dort kann vorgewählt werden, dass die Ethernet-Schnittstelle bzw. der Webserver nur Leserechte, bzw. Lese- und Schreibrechte gewährt werden. Werden Schreibrechte gewährt, können Änderungen an der Parametrierung der elektronischen Sicherungsautomaten parallel zum Feldbussystem vorgenommen werden. Diese Änderungen der Parameter werden dann dem übergeordneten Steuerungssystem mitgeteilt und können von diesem übernommen oder auch wieder überschrieben werden. Der Anwender kann das Verhalten entsprechend wählen.

5.5 Betriebsart: Firmware Update Mode

Die Geräte werden mit einer für ihre Funktionalität programmierten Software ausgeliefert. Sollte es zu Erweiterungen des Funktionsumfangs der Geräte kommen, werden diese durch ein Firmware Update hinzugefügt. Daher ist es notwendig, ein Update der Firmware des Gerätes durchzufuhren, wenn diese neue Funktionalität verwendet werden soll.

6 Grundfunktionalitäten des Gesamtsystems

6.1 Interne Zykluszeiten

Die Zykluszeit des Systems ist abhängig von der Anzahl der angeschlossenen elektronischen Sicherungsautomaten und der internen Übertragungsrate. Die interne Übertragungsrate kann 9600 Baud oder 19200 Baud betragen. Die Übertragungsrate wird nur auf 19200 gewechselt, wenn alle angeschlossenen Sicherungsautomaten diese Funktion unterstützen. Die Übertragungsrate wird in den zyklischen Daten im »Status Controller« signalisiert. Die aktuelle Zykluszeit ist mit dem azyklischen Zugriff auf die »dynamischen Informationen des CPC12« abrufbar.

Die Zykluszeit bei 16 Sicherungsautomaten und einer internen Übertragungsrate von 9600 Baud beträgt ca. 480 ms für die zyklischen Daten, also 30 ms pro Gerät. Für azyklische Daten wird ein Fenster von 130 ms frei gehalten. Das bedeutet in Summe eine maximale Zykluszeit von 610 ms.

Mit einer internen Übertragungsrate von 19200 Baud wird die Zykluszeit für die zyklischen Daten auf ca. 240 ms reduziert, also 15 ms pro Gerät. Für azyklische Daten wird dann ein Fenster von 100 ms frei gehalten. Das bedeutet in Summe eine maximale Zykluszeit von 340 ms.

6.2 Hot Swap der Sicherungsautomaten

Wird an einer bestehenden Applikation ein neuer Sicherungsautomaten angefügt, wird dieser automatisch mit den für den Adressplatz vorhandenen Parametern parametriert. Die Übertragung der Parameter findet ohne Unterbrechung des zyklischen Datenaustausches zwischen dem CPC und dem elektronischen Sicherungsautomaten statt.

6.3 Über die zusätzliche Ethernet-Schnittstelle

Die zusätzliche Ethernet-Schnittstelle erweitert den Funktionsumfang des Buscontrollers. Über diese werden die folgenden Funktionen bereitgestellt.

6.3.1 Webserver

Der Webserver bietet den gesamten Umfang an Messdaten, Statusinformationen, Parametriermöglichkeiten und Steuerfunktion des Buscontrollers CPC12. Die Parametrierung der Schnittstelle ist gesondert beschrieben.

6.3.2 Default IP-Adresse -X1

Die Default IP-Adresse des CPC12 lautet: 192.168.1.1 Über diese IP-Adresse kann der Webserver erreicht werden. Durch drücken des IP-Reset Tasters für 3 Sekunden wird die IP-Adresse auf den Default-Wert zurückgesetzt.

6.3.3 Benutzername und Passwort

Um Konfigurationen über den Webserver vornehmen zu können, muss der Bediener die notwendige Zugangsberechtigung besitzen. Diese wird in der Benutzerverwaltung definiert.

Die Defaulteinstellung lautet:

Benutzer:	admin
Passwort:	admin

Es wird dringend empfohlen, die Einstellung bei der Inbetriebnahme des Gerätes individuell anzupassen.

6.3.4 OPC UA

Diese Funktionalität wird erst in einer späteren Version integriert und beschrieben.

6.3.5 MQTT

Diese Funktionalität wird erst in einer späteren Version integriert und beschrieben.

7 Kommunikation über EtherCAT

7.1 ControlPlex® Gerätemodell

Das Stromverteilungssystem mit dem Controller CPC12 besteht aus einem passiven Einspeisemodul EM12-T00-000-DC24V-40A und bis zu 16 intelligente Sicherungsautomaten der REX-Familie.

 ${\it Das\ Stromverteilungs system\ \it Control Plex} ^{\tiny @}\ verwendet\ folgendes\ Ether CAT-Objekt verzeichnis.$

Index	Subindex	Name	Zugriff	Datenlänge	Datentyp	
0x1000	-	Device Type	r	4 Byte	Integer	
0x1008	-	Device Name	r		string	
0x1009	-	Hardware Version		string		
0x100A	-	Software Version		string		
	-	Identity Object	-	-	-	
	0	Number of Entries	r	1 Byte	Integer	
	1	Vendor ID	r	4 Byte	Integer	
0x1018	2	Product Code	r	4 Byte	Integer	
	3	Revision Number	r	4 Byte	Integer	
	4	Serial Number	r	4 Byte	Integer	
	-	Channel Control PDO	-	-	-	
	0	Number of Entries	r	1 Byte	Integer	
	1	Output Mapping Area 1	r	4 Byte	Integer	
0x1600	2	Output Mapping Area 2	r	4 Byte	Integer	
	3	Output Mapping Area 3	r	4 Byte	Integer	
	4	Output Mapping Area 4	r	4 Byte	Integer	
	-	Channel Status PDO	-	-	-	
	0	Number of Entries	r	1 Byte	Integer	
	1	Input Mapping Area 1	r	4 Byte	Integer	
0x1A00	2	Input Mapping Area 2	r	4 Byte	Integer	
	3	Input Mapping Area 3	r	4 Byte	Integer	
	4	Input Mapping Area 4	r	4 Byte	Integer	
	-	Channel Load Voltage PDO	-	-	-	
	0	Number of Entries	r	1 Byte	Integer	
2 4 4 6 4	1	Input Mapping Area 1	r	4 Byte	Integer	
0x1A01	2	Input Mapping Area 2	r	4 Byte	Integer	
	3	Input Mapping Area 3	r	4 Byte	Integer	
	4	Input Mapping Area 4	r	4 Byte	Integer	

Index	Subindex	Name	Zugriff	Datenlänge	Datentyp
	-	Channel Load Current PDO	-	-	-
	0	Number of Entries	r	1 Byte	Integer
0.4400	1	Input Mapping Area 1	r	4 Byte	Integer
0x1A02	2	Input Mapping Area 2	r	4 Byte	Integer
	3	Input Mapping Area 3	r	4 Byte	Integer
	4	Input Mapping Area 4	r	4 Byte	Integer
	-	Device Status PDO	-	-	-
0 4455	0	Number of Entries	r	1 Byte	Integer
0x1AFF	1	Status Mapping	r	4 Byte	Integer
	2	Summenstrom Mapping	r	4 Byte	Integer
	-	Sync Manager Com.Type			-
	0	Number of Entries	r	1 Byte	Integer
	1	Subindex 001	r	1 Byte	Integer
0x1C00	2	Subindex 002	r	1 Byte	Integer
	3	Subindex 003	r	1 Byte	Integer
	4	Subindex 004	r	1 Byte	Integer
	-	Sync Manager 2 PDO Assignment	-	-	-
0x1C12	0	Number of Entries	r	1 Byte	Integer
	1	Subindex 001	r	1 Byte	Integer
	-	Sync Manager 3 PDO Assignment	-	-	Integer
	0	Number of Entries	r	1 Byte	Integer
	1	Subindex 001	r	1 Byte	Integer
0x1C13	2	Subindex 002	r	1 Byte	Integer
	3	Subindex 003	r	1 Byte	Integer
	4	Subindex 004	r	1 Byte	Integer
	-	Acyclic Data Controller	-	-	-
	0	Number of Entries	r	1 Byte	Integer
	1	System Commands	W	1 Byte	Integer
0x2100	2	Configuration Data Controller	rw	8 Byte	Integer
	3	Device Information	r	19 Byte	Integer
	4	Dynamic Information	r	4 Byte	Integer

Index	Subindex	Name	Zugriff	Datenlänge	Datentyp
	-	Acyclic Data CH1	-	-	-
	0	Number of Entries	r	1 Byte	Integer
	1	Parameter Channel	rw	2 Byte	Integer
0.0404	2	Device Information	r	19 Byte	Integer
0x2101	3	Device Type Config	rw	2 Byte	Integer
	4	Events	r	1 Byte	Integer
	5	Action Commands Channel	W	1 Byte	Integer
	6	Dynamic Information	r	22 Byte	Integer
	-	Acyclic Data CH2	-	-	-
	0	Number of Entries	r	1 Byte	Integer
	1	Parameter Channel	rw	2 Byte	Integer
0.0400	2	Device Information	r	19 Byte	Integer
0x2102	3	Device Type Config	rw	2 Byte	Integer
	4	Events	r	1 Byte	Integer
	5	Action Commands Channel	W	1 Byte	Integer
	6	Dynamic Information	r	22 Byte	Integer
	-	Acyclic Data CH32	-	-	-
	0	Number of Entries	r	1 Byte	Integer
	1	Parameter Channel	rw	2 Byte	Integer
0-0100	2	Device Information	r	19 Byte	Integer
0x2120	3	Device Type Config	rw	2 Byte	Integer
	4	Events	r	1 Byte	Integer
	5	Action Commands Channel	W	1 Byte	Integer
	6	Dynamic Information	r	22 Byte	Integer
	-	Channel Status	-	-	-
	0	Number of Entries	r	1 Byte	Integer
	1	1.1 Status	r	1 Byte	Integer
0x6000	2	1.2 Status	r	1 Byte	Integer
	3	2.1 Status	r	1 Byte	Integer
	32	16.2 Status	r	1 Byte	Integer

Index	Subindex	Name	Zugriff	Datenlänge	Datentyp
	-	Channel Load Voltage	-	-	-
	0	Number of Entries	r	1 Byte	Integer
	1	1.1 Load Voltage	r	2 Byte	Integer
0x6010	2	1.2 Load Voltage	r	2 Byte	Integer
	3	2.1 Load Voltage	r	2 Byte	Integer
	32	16.2 Load Voltage	r	2 Byte	Integer
	-	Channel Load Current	-	-	-
	0	Number of Entries	r	1 Byte	Integer
	1	1.1 Load Current	r	2 Byte	Integer
0x6020	2	1.2 Load Current	r	2 Byte	Integer
	3	2.1 Load Current	r	2 Byte	Integer
	32	16.2 Load Current	r	2 Byte	Integer
	-	Channel Control	-	-	-
	0	Number of Entries	r	1 Byte	Integer
	1	1.1 Status	W	2 Byte	Integer
0x7000	2	1.2 Status	W	2 Byte	Integer
	3	2.1 Status	W	2 Byte	Integer
	32	16.2 Status	W	2 Byte	Integer
	-	Modular Device Profile	-	-	-
	0	Number of Entries	r	1 Byte	Integer
0xF000	1	Module Index Distance	r	2 Byte	Integer
	2	Maximum Number of Profiles	r	2 Byte	Integer
	-	Configured Module List	-	-	-
0xF030	0	Number of Entries	r	1 Byte	Integer
	1	Subindex 001	rw	2 Byte	Integer
	-	Detected Module List	-	-	-
0xF050	0	Number of Entries	r	1 Byte	Integer
	1	Subindex 001	r	2 Byte	Integer
	-	Controller Status	-	-	-
0xF100	0	Number of Entries	r	1 Byte	Integer
	1	Controller Status	r	2 Byte	Integer
	-	Total Current	-	-	-
0xF120	0	Number of Entries	r	1 Byte	Integer
	1	Total Current	r	4 Byte	Integer

7.2 ESI-Datei

Die ESI-Datei befindet sich im Download-Bereich der E-T-A Homepage und kann von dort heruntergeladen werden.

8 Zyklische E/A Daten

Je nach gewähltem Modul werden unterschiedlich viele Daten Bytes im zyklischen Datenverkehr ausgetauscht.

Die für das Projektierungswerkzeug bereitgestellte ESI-Datei ermöglicht dies zu konfigurieren, – das System erkennt alle erlaubten Konfigurationen und verarbeitet die in der Projektierung definierten zyklischen Daten.

Das Modul I/O-Daten CPC12 Controller ist fest im Slot 1 vorgegeben und kann nicht entfernt werden, da die Eingangsbytes wie nachfolgend beschrieben, wichtige Fehler und Diagnoseinformationen enthalten.

8.1 Zyklische Daten CPC12 Controller

Der CPC12 Controller stellt zyklisch Status- und Summenstrom-Informationen zur Verfügung.

8.1.1 I/O-Daten CPC12 Controller

Die 2 Bytes Eingangsdaten können über Register 0xF100 Subindex 1 abgefragt werden. Sie enthalten die folgenden globalen Fehler und Diagnosemeldungen. Dieses Modul enthält 2 Bytes Ausgangsdaten, welche für spätere Erweiterungen vorgesehen sind und aktuell nicht verwendet werden.

	Byte	Тур	Bereich	Beschreibung
Status Controller	0 HighByte 1 LowByte	UInt16	OxFFFF	Bit0 = Keine Konfigurationsdaten vorhanden Bit1 = Ungültige Konfigurationsdaten Bit2 = Angeschlossener Gerätetyp stimmt nicht mit Konfiguration überein Bit3 = Reserve Bit4 = Kommandospeicher Überlauf Bit5 = Keine Kommunikation zu ELBus® 1 Bit6 = Reserve Bit7 = Reserve Bit8 = Reserve Bit8 = Reserve Bit9 = CPC Temporärer Fehler Bit10 = CPC Hardware Fehler Bit11 = ELBus® 1 Kommunikationsgeschwindigkeit: 0=9600 Baud, 1=19200 Baud Bit12 = Reserve Bit13 = Reserve Bit14 = Reserve Bit15 = Schreibzugriff über Webserver deaktiviert = 1, erlaubt = 0

Abbildung 8: Zyklische Diagnosedaten CPC12

8.1.2 Summenstrom CPC12 Controller

Register 0xF120 Subindex 1 enthält den Summenstrom. Es wird ein 16 Bit- Wert mit dem berechneten Summenstrom aller im Slot eingetragenen Sicherungsautomaten (2 Byte Eingangsdaten) zur Verfügung gestellt.

Das Submodul besitzt keine Ausgangsdaten.

Der Messwert wird wie folgt dargestellt:

	Byte	Тур	Bereich	Beschreibung
Summenstrom	0 HighByte 1 LowByte	UInt16	0 65535	Es wird ein normierter 16 Bit-Wert mit einer Auflösung von 10 mA zur Verfügung gestellt. Beispiel für die Berechnung des Messwertes: Wert(1320) / 100 ≜ 13,20 Ampere

8.2 Zyklische Daten Sicherungsautomaten

Die Sicherungsautomaten liefern zyklisch Status-, Lastspannungs- und Laststrominformationen. Die Sicherungsautomaten können zusätzlich über zyklische Ausgangsdaten gesteuert werden.

Jeder Sicherungsautomat besitzt bis zu zwei Kanäle. Es werden immer für beide möglichen Kanäle eines Schutzschalters Eingangsund Ausgangsdaten übertragen. Hat der verwendete Schutzschalter nur einen Kanal, wird der Status des zweiten Kanals als nicht vorhanden (0xFF) markiert und der Laststrom die Lastspannung auf 0 gesetzt.

8.2.2 Zyklische Eingangsdaten Sicherungsautomaten

Pro konfiguriertem Sicherungsautomaten werden 10 Byte Eingangsdaten zur Verfügung gestellt. Diese setzen sich aus 1 Byte Status pro Kanal und jeweils 2 Byte Laststrom- und Lastspannungswerten pro Kanal zusammen.

Der Status ist unter Index 0x6000 von Subindex 1 bis 32 zu finden.

Die Lastspannung befindet sich in Register 0x6010 von Subindex 1 bis 32.

Der Laststrom befindet sich in Register 0x6020 von Subindex 1 bis 32.

Der Subindex repräsentiert jeweils die Kanalnummer.

Pro Sicherungsautomaten ist der Aufbau der Eingangsbytes wie folgt:

	Byte	Тур	Bereich	Beschreibung
Status Kanal 1	0	Byte	0 255	0xFF (255) ≜ kein Gerät vorhanden oder oder falsches Gerät konfiguriert Bit0 = Lastausgang ein Bit1 = Kurzschluss Bit2 = Überlast Bit3 = Unterspannung Bit4 = Reserve Bit5 = Reserve Bit6 = Grenzwert Strom Bit7 = Ereignis Ein »True« bedeutet, dass der Zustand aktiv ist.
Laststrom Kanal 1	1 HighByte 2 LowByte	UInt16	0 65535	Es wird ein normierter 16 Bit-Wert mit einer Auflösung von 10 mA zur Verfügung gestellt. Beispiel für die Berechnung des Messwertes: Wert(150) / 100 ≜ 1,50 Ampere
Lastspannung Kanal 1	3 HighByte 4 LowByte	UInt16	0 65535	Es wird ein normierter 16 Bit-Wert mit einer Auflösung von 10 mV zur Verfügung gestellt. Beispiel für die Berechnung des Messwertes: Wert(2512) / 100 ≜ 25,12 Volt
Status Kanal 2	5	Byte	0 255	0xFF (255) ≜ kein Gerät vorhanden, Fehlkonfiguration oder 1-Kanaliges Gerät verwendet oder falsches Gerät konfiguriert Bit0 = Lastausgang ein Bit1 = Kurzschluss Bit2 = Überlast Bit3 = Unterspannung Bit4 = Reserve Bit5 = Reserve Bit6 = Grenzwert Strom Bit7 = Ereignis Ein »True« bedeutet, dass der Zustand aktiv ist.
Laststrom Kanal 2	6 HighByte 7 LowByte	Ulnt16	0 65535	Es wird ein normierter 16 Bit-Wert mit einer Auflösung von 10 mA zur Verfügung gestellt. Beispiel für die Berechnung des Messwertes: Wert(150) / 100 ≜ 1,50 Ampere
Lastspannung Kanal 2	8 HighByte 9 LowByte	Ulnt16	0 65535	Es wird ein normierter 16 Bit-Wert mit einer Auflösung von 10 mV zur Verfügung gestellt. Beispiel für die Berechnung des Messwertes: Wert(2512) / 100

Abbildung 10: Eingangsdaten Sicherungsautomat

8.2.3 Zyklische Ausgangsdaten Sicherungsautomaten

Über die zyklischen Ausgangsdaten kann jeder Kanal Ein- bzw. Ausgeschaltet und Zurückgesetzt werden. Pro Kanal ist ein Subindex (1 bis 32) im Register 0x7000 reserviert. Auch hier repräsentiert der Subindex die Kanalnummer.

Pro Sicherungsautomat ist der Aufbau der Ausgangsbytes (Ansteuerung) wie folgt:

	Byte	Тур	Bereich	Beschreibung
Ansteuerung Kanal 1	0	Byte	0 255	Bit0 = Lastausgang ein/ausschalten Bit1 = Lastausgang rücksetzen
Ansteuerung Kanal 2	1	Byte	0 255	Bit0 = Lastausgang ein/ausschalten Bit1 = Lastausgang rücksetzen

Abbildung 11: Ausgangsdaten Sicherungsautomat

9 Azyklische Daten

Über azyklische Dienste ist es möglich, weitere Daten mit dem CPC12 Controller und den Sicherungsautomaten auszutauschen. Der Zugriff erlaubt auch die direkte Adressierung eines Sicherungsautomaten. Hierbei werden der Index und Subindex verwendet um die Daten des CPC12 zu lesen und zu schreiben. Der Zugriff auf die Sicherungsautomaten ist in Kanäle gegliedert. Pro Sicherungsautomat sind zwei Kanäle vorgesehen.

Der azyklische Zugriff auf die Daten des CPC12 ist wie folgt aufgeteilt:

Index	Subindex	Anzahl der Datenbytes	Lesen (R) / Schreiben (W)	Beschreibung
0x2100	03	19	R	Geräteinformationen des CPC12 Controllers (siehe Kapitel 9.1.1).
0x2100	02	5	R/W	Konfigurationsdaten des CPC12 Controllers (siehe Kapitel 9.1.2).
0x2100	01	1	W	Aktionsbefehle für alle Kanäle und den CPC12 Controller (siehe Kapitel 9.1.3).
0x2100	04	4	R	Dynamische Informationen des CPC12 Controllers (siehe Kapitel 9.1.4).

Abbildung 12: Aufteilung Parameter Index CPC12

Der azyklische Zugriff auf die Daten der Sicherungsautomaten bzw. Kanäle ist wie folgt aufgeteilt: Beispiel Index für Kanal 7, 0x2100 + 7 = 0x2107

Index	Subindex	Anzahl der Datenbytes	Lesen (R) / Schreiben (W)	Beschreibung
0x2100 + Kanalnummer	01	2	R/W	Geräteparameter eines Kanals (siehe Kapitel 9.2.1).
0x2100 + Kanalnummer	02	19	R	Geräteinformationen eines Kanals (siehe Kapitel 9.2.2).
0x2100 + Kanalnummer	03	2	R/W	Konfigurationsdaten eines Kanals (siehe Kapitel 9.2.3).
0x2100 + Kanalnummer	04	1	R	Ereignismeldung eines Kanals (siehe Kapitel 9.2.4).
0x2100 + Kanalnummer	05	1	W	Aktionsbefehle für einen Kanal (siehe Kapitel 9.2.5).
0x2100 + Kanalnummer	06	22	R	Diagnosedaten eines Kanals (siehe Kapitel 9.2.6).

Abbildung 13: Aufteilung Parameter Index Kanal

9.1 CPC12 Controller

In den folgenden Kapiteln werden die azyklischen Parameter des Controllers beschrieben.

9.1.1 Geräteinformationen CPC12 Controller

Die Geräteinformationen des Controllers bestehen aus 19 Bytes.

Zugriff: Index 0x2100, Subindex 3

In der Nachfolgenden Tabelle werden alle Geräteinformationen mit den möglichen Zuständen beschrieben.

	Byte	Тур	Bereich	Beschreibung
Gerätetyp	0 HighByte 1 LowByte	UInt16	0 65535	16437 = CPC12EC-T1 Diese Liste kann sich durch künftige Controller erweitern
Hardwareversion	2 HighByte 3 LowByte	UInt16	0 65535	Enthält die Hardwareversion des installierten Produktes
Fertigungs- auftragsnummer Intern	4 HwHb 5 HwLB 6 LwHB 7 LwLB	UInt32	0 4294967295	Enthält die Fertigungsauftragsnummer des installierten Produktes
Produktions- anlagennummer	8 HwHb 9 HwLB 10 LwHB 11 LwLB	UInt32	0 4294967295	Enthält die Produktionsanlagennummer des installierten Produktes
Seriennummer	12 HwHb 13 HwLB 14 LwHB 15 LwLB	UInt32	0 4294967295	Enthält die Seriennummer des installierten Produktes
Softwareversion (major.x.x)	16	Byte	0 255	Enthält die major Software Version des installierten Produktes
Softwareversion (x.minor.x)	17	Byte	0 255	Enthält die minor Software Version des installierten Produktes
Softwareversion (x.x.build)	18	Byte	0 255	Enthält die build Software Version des installierten Produktes

Abbildung 14: Geräteinformation CPC12

9.1.2 Konfigurationsdaten CPC12 Controller

Die Konfigurationsdaten für den Controller bestehen aus 5 Bytes.

Zugriff: Index 0x2100, Subindex 2

In der Nachfolgenden Tabelle werden alle Konfigurationsdaten mit den möglichen Zuständen beschrieben.

	Byte	Тур	Bereich	Beschreibung
Konfigurations-daten des CPC	0	Byte	0 255	Bit0 = Schreiben über Webserver erlaubt. Erlaubt das verändern von Parametern über den Webserver auch wenn die Feldbusverbindung aktiv ist. Bit1 True: Bei einer Feldbus Unterbrechung bleibt der Status der Lastausgänge erhalten. False: Bei einer Feldbus Unterbrechung werden alle Lastausgange in den Status aus versetzt. Bit2 = Energiesparmodus, die LEDs werden zur Leistungsreduzierung abgedunkelt. Bit3 = Reserve Bit4 = Reserve Bit5 = Reserve Bit6 = Reserve Bit7 = Reserve Wenn nicht anders beschrieben bedeutet ein »True«, dass die Funktion aktiv ist.
Steuerbefehle sperren ELBus® 1 am CPC Kanal 1 16	1 HighByte 2 LowByte	UInt16	0 65535	Jedes Bit repräsentiert einen Kanal. (Bit0 = Kanal 1; Bit1 = Kanal 2) Ist das Bit gesetzt bedeutet dieses, dass der Kanal nicht über die Steuerung oder den Webserver ein- oder ausgeschaltet werden kann.
Steuerbefehle sperren ELBus® 1 am CPC Kanal 17 32	3 HighByte 4 LowByte	Ulnt16	0 65535	Jedes Bit repräsentiert einen Kanal. (Bit0 = Kanal 17; Bit1 = Kanal 18) Ist das Bit gesetzt bedeutet dieses, dass der Kanal nicht über die Steuerung oder den Webserver ein- oder ausgeschaltet werden kann.
Reserve	5 HighByte 6 LowByte	UInt16	0	Reserve
Reserve	7 HighByte 8 LowByte	UInt16	0	Reserve

Abbildung 15: Konfigurationsdaten CPC12

9.1.3 Aktionsbefehle CPC12 Controller

Die Aktionsbefehle des Controllers bestehen aus 1 Byte. Alle Aktionsbefehle die an den CPC12 gesendet werden führen die Aktion für alle Kanäle aus.

Zugriff: Index 0x2100, Subindex 1

In der Nachfolgenden Tabelle werden die Aktionsbefehle mit den möglichen Zuständen beschrieben.

	Byte	Тур	Bereich	Beschreibung
Aktionsbefehle	0	Byte	0 255	 116 = Auslösezähler rücksetzen 118 = Geräteparameter auf Werkseinstellungen rücksetzen inklusive CPC12 ¹⁾ 131 = Back to Box ²⁾ 132 = Gerätekonfiguration an angeschlossene Geräte anpassen (vgl. Kapitel 9.2.3) 192 = Statistiken Minimalwerte rücksetzen 196 = Statistiken Maximalwerte rücksetzen 220 = Statistiken Mittelwerte rücksetzen Andere Werte werden nicht akzeptiert.

Abbildung 16: Aktionsbefehle CPC12

- ¹⁾ Der Befehl »118 = Geräteparameter auf Werkseinstellungen rücksetzen inklusive CPC12« innerhalb der Aktionsbefehle für den CPC12 soll folgende Daten zurücksetzen:
 - Parameter (Nennstrom = 10 A, Grenzwert Laststrom = 80 %) jedes Kanals
 - PLC-Lock bit jedes Kanals (default = True, also Kanal nicht von der PLC steuerbar)
 - nicht die konfigurierten Gerätetypen
 - nicht die Statistikwerte (min, max, avg) der Kanäle
 - nicht den Fehlerspeicher, Auslösezähler und Auslösegrund der Kanäle
 - Konfigurationsdaten
 - Energiesparmodus = False = LEDs normal
 - Verhalten der Lastausgänge bei Feldbusunterbrechung = True = Status bleibt erhalten
 - Schreiben über Webserver erlaubt = True
- ²⁾ Der Befehl »131 = Back-to-Box« innerhalb der Aktionsbefehle für den CPC12 soll folgende Daten zurücksetzen:
 - Parameter (Nennstrom = 10 A, Grenzwert Laststrom = 80 %) jedes Kanals
 - PLC-Lock bit jedes Kanals (default = True, also Kanal nicht von der PLC steuerbar)
 - konfigurierten Gerätetypen (default = REX12D-TA1 = 0x9009 = 36873)
 - die Statistikwerte (min, max, avg) der Kanäle
 - den Fehlerspeicher, Auslösezähler und Auslösegrund der Kanäle
 - Konfigurationsdaten
 - Energiesparmodus = False = LEDs normal
 - Verhalten der Lastausgänge bei Feldbusunterbrechung = True = Status bleibt erhalten
 - Schreiben über Webserver erlaubt = True
 - IP-Konfiguration des dritten ETH-Ports X1
 - IP-Adresse = 192.168.1.1
 - Netzmaske = 255.255.255.0
 - Gateway = 192.168.1.254
 - DHCP = False
 - Benutzerdaten
 - Name = »admin«
 - Password = »admin«

9.1.4 Dynamische Informationen CPC12 Controller

Zugriff: Index 0x2100, Subindex 4

	Byte	Тур	Bereich	Beschreibung
Zykluszeit ELBus® 1	0 HighByte 1 LowByte	Ulnt16	0 65535	Enthält die interne Zykluszeit des ELBus® in Millisekunden [ms].
Reserve	2 HighByte 3 LowByte	Ulnt16	0 65535	Reserve

Abbildung 17: Dynamische Informationen CPC12

9.2 Sicherungsautomaten / Kanäle

In den folgenden Kapiteln werden die Parameter der Sicherungsautomaten beschrieben. Die Parameter sind in Kanälen organisiert.

9.2.1 Geräteparameter für einen Kanal

Die Geräteparameter für einen Kanal bestehen aus 2 Bytes.

Zugriff: Index 0x2100 + Kanalnummer, Subindex 1

In der Nachfolgenden Tabelle werden alle Geräteparameter mit den möglichen Zuständen beschrieben.

	Byte	Тур	Bereich	Beschreibung
Nennstrom	0	Byte	1 25	Enthält den Nennstrom des Kanals. Bei einstellbaren Geräten kann hier auch ein neuer Nennstrom vorgegeben und mit einem Schreibbefehl übertragen werden. 1 = 1A Nennstrom 2 = 2A Nennstrom 3 = 3A Nennstrom 10 = 10A Nennstrom (Default Wert)
Grenzwert Laststrom	6	Byte	50 100	Legt fest, bei wieviel Prozent des Nennstroms eines Kanals der Grenzwert überschritten wird. Die Überschreitung wird mit einem Bit im »Status Kanal« der zyklischen Daten signalisiert. Der Bereich liegt zwischen 50 % 100 %. Der Default Wert ist 80 %

Abbildung 18: Geräteparameter Kanal

9.2.2 Geräteinformationen für einen Kanal

Die Geräteinformationen für einen Kanal bestehen aus 19 Bytes.

Zugriff: Index 0x2100 + Kanalnummer, Subindex 2

In der Nachfolgenden Tabelle werden alle Geräteinformationen mit den möglichen Zuständen beschrieben.

	Byte	Тур	Bereich	Beschreibung
Gerätetyp	0 HighByte 1 LowByte	UInt16	0 65535	36873 = REX12D-TA1-100 36874 = REX12D-TA2-100 36878 = REX12D-TE2-100 36910 = REX12D-TE2-100-CL2 36905 = REX12D-TB1-100 36937 = REX12D-TA1-100-CL2 36969 = REX12D-TB1-100-CL2 36906 = REX12D-TA2-100-CL2 36942 = REX12D-TE2-101 36974 = REX12D-TE2-101 36938 = REX12D-TA1-101 37033 = REX12D-TA1-101 37033 = REX12D-TA1-101 37065 = REX12D-TA1-101-CL2 37097 = REX12D-TB1-101-CL2 37130 = REX2D-TD2-100-CL2 37130 = REX22D-TD2-100-CL2 37162 = REX22D-TD2-100 37129 = REX22D-TD1-100 37134 = REX22D-TE2-100 37134 = REX22D-TE2-100 37134 = REX22D-TD2-101-CL2 37194 = REX22D-TD2-101-CL2 37193 = REX22D-TD2-101-CL2 37193 = REX22D-TD2-101 37193 = REX22D-TD1-101 37225 = REX22D-TD1-101 37230 = REX22D-TE2-101 37230 = REX22D-TE2-101-CL2 Diese Liste kann sich durch künftige Sicherungsautomaten erweitern.
Hardwareversion	2 HighByte 3 LowByte	UInt16	0 65535	Enthält die Hardwareversion des installierten Produktes
Fertigungs- auftragsnummer Intern	4 HwHb 5 HwLB 6 LwHB 7 LwLB	UInt32	0 4294967295	Enthält die Fertigungsauftragsnummer des installierten Produktes
Produktions- anlagennummer	8 HwHb 9 HwLB 10 LwHB 11 LwLB	UInt32	0 4294967295	Enthält die Produktionsanlagennummer des installierten Produktes
Seriennummer	12 HwHb 13 HwLB 14 LwHB 15 LwLB	UInt32	0 4294967295	Enthält die Seriennummer des installierten Produktes
Softwareversion (major.x.x)	16	Byte	0 255	Enthält die major Software Version des installierten Produktes
Softwareversion (x.minor.x)	17	Byte	0 255	Enthält die minor Software Version des installierten Produktes
Softwareversion (x.x.build)	18	Byte	0 255	Enthält die build Software Version des installierten Produktes

Abbildung 19: Geräteinformation Kanal

9.2.3 Konfigurationsdaten für einen Kanal

Die Konfigurationsdaten für einen Kanal bestehen aus 2 Bytes.

Zugriff: Index 0x2100 + Kanalnummer, Subindex 3

In der Nachfolgenden Tabelle werden alle Konfigurationsdaten mit den möglichen Zuständen beschrieben.

	Byte	Тур	Bereich	Beschreibung
Gerätetyp	0 HighByte 1 LowByte	UInt16	0 65535	Hier wird der erwartete Gerätetyp für den Kanal eingestellt. Der Gerätetyp beeinflusst immer einen Schutzschalter, also beide mögliche Kanäle. 36873 = REX12D-TA1-100 36874 = REX12D-TA2-100 36878 = REX12D-TE2-100 36910 = REX12D-TE2-100-CL2 36905 = REX12D-TB1-100 36937 = REX12D-TB1-100-CL2 36906 = REX12D-TA1-100-CL2 36906 = REX12D-TA2-100-CL2 36906 = REX12D-TA2-101-CL2 37001 = REX12D-TA2-101 36974 = REX12D-TA2-101 37033 = REX12D-TA2-101 37033 = REX12D-TB1-101 37065 = REX12D-TB1-101 37097 = REX12D-TB1-101-CL2 37097 = REX12D-TB1-101-CL2 37130 = REX22D-TD2-100-CL2 371130 = REX22D-TD2-100 37129 = REX22D-TD1-100 371161 = REX22D-TA1-100 371161 = REX22D-TE2-100 37134 = REX22D-TD2-101 37134 = REX22D-TD2-101-CL2 37194 = REX22D-TD2-101-CL2 37226 = REX22D-TD1-101 37193 = REX22D-TD1-101 37193 = REX22D-TD2-101 37198 = REX22D-TE2-101 37230 = REX22D-TE2-101-CL2 Diese Liste kann sich durch künftige Sicherungsautomaten erweitern.

Abbildung 20: Konfigurationsdaten Kanal

9.2.4 Ereignismeldung für einen Kanal

Die Ereignismeldungen für einen Kanal bestehen aus 1 Byte.

Zugriff: Index 0x2100 + Kanalnummer, Subindex 4

In der Nachfolgenden Tabelle werden alle Ereignismeldungen mit den möglichen Zuständen beschrieben.

	Byte	Тур	Bereich	Beschreibung
Ereignis	0	Byte	0 255	Bit0 = Warten auf Parametrierung Bit1 = Reserve Bit2 = Neuer Nennstrom vorhanden Bit3 = Kanal ist über Taster/Schalter aus Bit4 = Reserve Bit5 = Reserve Bit6 = Reserve Bit7 = Gerätefehler erkannt Ein »True« bedeutet, dass der Zustand aktiv ist.

Abbildung 21: Ereignismeldungen Kanal

9.2.5 Aktionsbefehle für einen Kanal

Die Aktionsbefehle für einen Kanal bestehen aus 1 Byte.

Zugriff: Index 0x2100 + Kanalnummer, Subindex 5

In der Nachfolgenden Tabelle werden alle Aktionsbefehle mit den möglichen Zuständen beschrieben.

	Byte	Тур	Bereich	Beschreibung
Aktionsbefehle	0	Byte	0 255	116 = Auslösezähler rücksetzen 118 = Geräteparameter auf Werkseinstellungen rücksetzen ¹⁾ 131 = Back to Box ²⁾ 192 = Statistiken Minimalwerte rücksetzen 196 = Statistiken Maximalwerte rücksetzen 220 = Statistiken Mittelwerte rücksetzen Andere Werte werden nicht akzeptiert.

Abbildung 22: Aktionsbefehle Kanal

- Parameter (Nennstrom = 10 A, Grenzwert Laststrom = 80 %) jedes Kanals
- PLC-Lock bit jedes Kanals (default = True, also Kanal nicht von der PLC steuerbar)
- nicht die konfigurierten Gerätetypen
- nicht die Statistikwerte (min, max, avg) der Kanäle
- nicht den Fehlerspeicher, Auslösezähler und Auslösegrund der Kanäle

- Parameter (Nennstrom = 10 A, Grenzwert Laststrom = 80 %) des Kanals
- PLC-Lock bit des Kanals (default = True, also Kanal nicht von der PLC steuerbar)
- den konfigurierten Gerätetyp (default = REX12D-TA1 = 0x9009 = 36873)
- die Statistikwerte (min = 655.35 A/V, max = 0 A/V, avg = 0 A/V) des Kanals
- den Fehlerspeicher, Auslösezähler und Auslösegrund des Kanals

¹⁾ Der Befehl »118 = Geräteparameter auf Werkseinstellungen rücksetzen« innerhalb der Aktionsbefehle pro Kanal soll folgende Daten zurücksetzen:

²⁾ Der Befehl »131 = Back-to-Box« innerhalb der Aktionsbefehle pro Kanal soll folgende Daten zurücksetzen:

9.2.6 Diagnosedaten für einen Kanal

Die dynamischen Informationen für einen Kanal bestehen aus 22 Byte.

Zugriff: Index 0x2100 + Kanalnummer, Subindex 6

In der Nachfolgenden Tabelle werden alle dynamischen Informationen mit den möglichen Zuständen beschrieben.

	Byte	Тур	Bereich	Beschreibung
Fehlerspeicher	0 HighByte 1 LowByte	Ulnt16	0 65535	Bit0 = Keine Parameter vorhanden Bit1 = Fehler Parameterspeicher Bit2 = Fehler Programmspeicher Bit3 = Fehler Datenspeicher Bit4 = Fehler Steuereinheit Bit5 = Reset durch Watchdog Bit6 = Reserve Bit7 = Reserve Bit8 = Reserve Bit9 = Reserve Bit10 = Reserve Bit11 = Reserve Bit11 = Reserve Bit12 = Reserve Bit13 = Reserve Bit14 = Reserve Bit15 = Reserve Ein »True« bedeutet, dass der Zustand aktiv ist.
Auslösezähler	2 HighByte 3 LowByte	UInt16	0 65535	Hier wird die Anzahl der Auslösungen seit dem letzten Rücksetzen des Auslösezählers angezeigt.
Auslösegrund	4	Byte	0 255	0 = Keine Auslösung vorhanden 1 = Kurzschluss 2 = Überlast 3 = Gerätetemperatur zu hoch 4 = Interner Gerätefehler
Min. Lastspannung	5 HighByte 6 LowByte	UInt16	0 65535	Enthält die niedrigste gemessene Spannung des Kanals seit dem letzten Reset. Es wird ein normierter 16 Bit-Wert mit einer Auflösung von 10 mV zur Verfügung gestellt. Beispiel für die Berechnung des Messwertes: Wert(2512) / 100 ≜ 25,12 Volt
Max. Lastspannung	7 HighByte 8 LowByte	UInt16	0 65535	Enthält die höchste gemessene Spannung des Kanals seit dem letzten Reset. Es wird ein normierter 16 Bit-Wert mit einer Auflösung von 10 mV zur Verfügung gestellt. Beispiel für die Berechnung des Messwertes: Wert(2512) / 100 ≜ 25,12 Volt
Mittelwert Lastspannung	9 HighByte 10 LowByte	UInt16	0 65535	Enthält den Mittelwert der Spannung des Kanals seit dem letzten Reset. Es wird ein normierter 16 Bit-Wert mit einer Auflösung von 10 mV zur Verfügung gestellt. Beispiel für die Berechnung des Messwertes: Wert(2512) / 100 ≜ 25,12 Volt
Min. Laststrom	11 HighByte 12 LowByte	UInt16	0 65535	Enthält den niedrigsten gemessenen Strom des Kanals seit dem letzten Reset. Es wird ein normierter 16 Bit-Wert mit einer Auflösung von 10 mA zur Verfügung gestellt. Beispiel für die Berechnung des Messwertes: Wert(150) / 100 ≜ 1,50 Ampere

27

	Byte	Тур	Bereich	Beschreibung
Max. Laststrom	13 HighByte 14 LowByte	UInt16	0 65535	Enthält den höchsten gemessenen Strom des Kanals seit dem letzten Reset. Es wird ein normierter 16 Bit-Wert mit einer Auflösung von 10 mA zur Verfügung gestellt. Beispiel für die Berechnung des Messwertes: Wert(150) / 100 ≜ 1,50 Ampere
Mittelwert Laststrom	15 HighByte 16 LowByte	UInt16	0 65535	Enthält den Mittelwert des Stroms eines Kanals seit dem letzten Reset. Es wird ein normierter 16 Bit-Wert mit einer Auflösung von 10 mA zur Verfügung gestellt. Beispiel für die Berechnung des Messwertes: Wert(150) / 100 ≜ 1,50 Ampere
Versorgungs- spannung / Aktorspannung	17 HighByte 18 LowByte	UInt16	0 65535	Enthält die Versorgungsspannung / Aktorspannung des Kanals. Es wird ein normierter 16 Bit-Wert mit einer Auflösung von 10 mV zur Verfügung gestellt. Beispiel für die Berechnung des Messwertes: Wert(2512) / 100 ≜ 25,12 Volt
Reserve	19 HighByte 20 LowByte	UInt16	0 65535	Reserve
Diagnoseinformation des Kanals	21	Byte	0 255	 0 = OK 1 = Vorhandene Gerätetype stimmt nicht mit der konfigurierten Gerätetype überein 2 = Kein Gerät erkannt 3 = Ungenutzter Kanal 144 = Geräteparameter nicht plausibel 146 = Kanal ist über Taster/Schalter aus 147 = Unterspannung erkannt 148 = Übertemperatur erkannt 149 = Rücksetzbefehl notwendig 150 = Befehl wurde korrekt verarbeitet 151 = Parametrierung notwendig 152 = Interner Gerätefehler erkannt 153 = Unbekannter Befehl 154 = Satzlängenfehler 155 = Nennstrom vorhanden Checksummenfehler 156 = Nennstromwahlschalter wurde betätigt

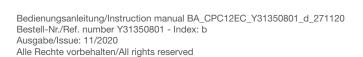
Abbildung 23: Dynamische Informationen

10 Anhang

10.1 Abbildungsverzeichnis

Abbildung 1: Systemübersicht	6
Abbildung 2: Abmessungen CPC12	7
Abbildung 3: Anzeigeelemente und Anschlüsse CPC12EC	7
Abbildung 4: Anzeige Status LED's	9
Abbildung 5: Anzeige LED's RJ45-Buchsen	9
Abbildung 6: Montagezeichnung	9
Abbildung 7: EtherCAT Objektverzeichnis	15
Abbildung 8: Zyklische Diagnosedaten CPC12	16
Abbildung 9: Summenstrom	16
Abbildung 10: Eingangsdaten Sicherungsautomat	17
Abbildung 11: Ausgangsdaten Sicherungsautomat	18
Abbildung 12: Aufteilung Parameter Index CPC12	19
Abbildung 13: Aufteilung Parameter Index Kanal	19
Abbildung 14: Geräteinformation CPC12	20
Abbildung 15: Konfigurationsdaten CPC12	21
Abbildung 16: Aktionsbefehle CPC12	22
Abbildung 17: Dynamische Informationen CPC12	23
Abbildung 18: Geräteparameter Kanal	23
Abbildung 19: Geräteinformation Kanal	24
Abbildung 20: Konfigurationsdaten Kanal	25
Abbildung 21: Ereignismeldungen Kanal	25
Abbildung 22: Aktionsbefehle Kanal	26
Abbildung 23: Dynamische Informationen	28

10.2 Technische Daten


Die technischen Daten zum CPC12EC können dem Datenblatt entnommen werden.

Notizen

Notizen

http://www.e-t-a.de/qr1043/

E-T-A Elektrotechnische Apparate GmbH Industriestraße 2-8 · 90518 ALTDORF DEUTSCHLAND Tel. 09187 10-0 · Fax 09187 10-397

E-Mail: info@e-t-a.de · www.e-t-a.de